
 Page 1 of 48

PNI Corporation

TCM3/5/5L
Tilt Compensated 3-axis Compass Module

 Page 2 of 48

© Copyright

PNI Corporation 2005

All Rights Reserved. Reproduction, adaptation, or

translation without prior written permission is prohibited,

except as allowed under copyright laws.

Revised November 2006
For most recent version visit our website at
www.pnicorp.com
Printed in USA

PNI Corporation

133 Aviation Blvd, Suite 101

Santa Rosa, CA 95403, USA

Tel: (707) 566-2260

Fax: (707) 566-2261

Warranty and Limitation of Liability. PNI Corporation
("PNI") manufactures its TCM products (“Products”)
from parts and components that are new or equivalent
to new in performance. PNI warrants that each Product
to be delivered hereunder, if properly used, will, for one
year following the date of shipment unless a different
warranty time period for such Product is specified: (i) in
PNI’s Price List in effect at time of order acceptance; or
(ii) on PNI’s web site (www.pnicorp.com) at time of
order acceptance, be free from defects in material and
workmanship and will operate in accordance with PNI’s
published specifications and documentation for the
Product in effect at time of order. PNI will make no
changes to the specifications or manufacturing
processes that affect form, fit, or function of the Product
without written notice to the OEM, however, PNI may at
any time, without such notice, make minor changes to
specifications or manufacturing processes that do not
affect the form, fit, or function of the Product. This
warranty will be void if the Products’ serial number, or
other identification marks have been defaced, damaged,
or removed. This warranty does not cover wear and
tear due to normal use, or damage to the Product as
the result of improper usage, neglect of care, alteration,
accident, or unauthorized repair.
THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER
WARRANTY, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO,
ANY WARRANTY OF MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE. PNI

NEITHER ASSUMES NOR AUTHORIZES ANY
PERSON TO ASSUME FOR IT ANY OTHER
LIABILITY.

If any Product furnished hereunder fails to conform to
the above warranty, OEM’s sole and exclusive remedy
and PNI’s sole and exclusive liability will be, at PNI’s
option, to repair, replace, or credit OEM’s account with
an amount equal to the price paid for any such Product
which fails during the applicable warranty period
provided that (i) OEM promptly notifies PNI in writing
that such Product is defective and furnishes an
explanation of the deficiency; (ii) such Product is
returned to PNI’s service facility at OEM’s risk and
expense; and (iii) PNI is satisfied that claimed
deficiencies exist and were not caused by accident,
misuse, neglect, alteration, repair, improper installation,
or improper testing. If a Product is defective,
transportation charges for the return of the Product to
OEM within the United States and Canada will be paid
by PNI. For all other locations, the warranty excludes all
costs of shipping, customs clearance, and other related
charges. PNI will have a reasonable time to make
repairs or to replace the Product or to credit OEM’s
account. PNI warrants any such repaired or
replacement Product to be free from defects in material
and workmanship on the same terms as the Product
originally purchased.

Except for the breach of warranty remedies set forth
herein, or for personal injury, PNI shall have no liability
for any indirect or speculative damages (including, but
not limited to, consequential, incidental, punitive and
special damages) relating to the use of or inability to
use this Product, whether arising out of contract,
negligence, tort, or under any warranty theory, or for
infringement of any other party’s intellectual property
rights, irrespective of whether PNI had advance notice
of the possibility of any such damages, including, but
not limited to, loss of use, revenue or profit. In no event
shall PNI’s total liability for all claims regarding a
Product exceed the price paid for the Product. PNI
neither assumes nor authorizes any person to assume
for it any other liabilities.

Some states and provinces do not allow limitations on
how long an implied warranty lasts or the exclusion or
limitation of incidental or consequential damages, so
the above limitations or exclusions may not apply to you.
This warranty gives you specific legal rights and you
may have other rights that vary by state or province.

 Page 3 of 48

About the TCM3/5/5L

Thank you for purchasing the TCM3/5/5L. You have chosen a product that represents the largest
step forward in compass technology for many years. The TCM3/5/5L is a state-of-the-art, low
power, high performance electronic tilt compensated compass sensor module.

The TCM3/5/5L uses advanced algorithms, with hard iron and soft iron corrections, to provide
highly accurate heading information, in any orientation (TCM5 & TCM5L only), at latitudes up to
85°. The output information of the unit will indicate accurate attitude position of the module and
can be used in systems requiring full 360° rotation (TCM5 & TCM5L only). This has been
accomplished by integrating 3-axis magnetic field sensing, 3-axis tilt sensing, and compass
heading into a single module, which is one of the smallest in the market. With its small size, the
TCM3/5/5L is capable of fitting into today’s size sensitive systems. These advantages make PNI
Corporation’s TCM3/5/5L the choice for applications that require the highest accuracy and
performance anywhere in the world.

The TCM3/5/5L combines PNI Corporation’s patented Magneto-Inductive (MI) sensors and
measurement circuit technology with a 3-axis MEMS accelerometer for unparalleled cost
effectiveness and performance. The magnetic sensors and accelerometers are calibrated to
operate from -40 to 85°C; hence the measurement is very stable over temperature and inherently
free from offset drift.

The TCM3/5/5L’s advantages make it suitable for many applications, including:

• High-performance solid state navigation equipment
• High-performance attitude measurement
• IMU system integration
• 3-axis magnetic field sensing
• Robotics systems
• Laser range finders
• Drilling applications

With its many potential applications, the TCM3/5/5L provides a command set designed with
flexibility and adaptability in mind. Many parameters are user-programmable, including reporting
units, a wide range of sampling configurations, output damping, and more. We hope the
TCM3/5/5L will help you to achieve the greatest performance from your target system. Thank you
for selecting the TCM3/5/5L.

 Page 4 of 48

Installation

This section describes how to configure, program, and control the TCM3/5/5L in your host system.
To install the TCM3/5/5L into your system, follow these steps:

• Make electrical connections to the TCM3/5/5L

• Evaluate the TCM3/5/5L using the included TCM Studio Program

• Choose a mounting location

• Mechanically mount the TCM3/5/5L

• Perform user calibration

Electrical Connections – TCM3/5

Included with the TCM3/5 Interface Kit is a cable to allow for the unit to be connected to your host
system. On one end of the cable is the connector needed to mate with the TCM3/5. The cable’s
wires are color coded as indicated below.

PNI also has a 6-foot cable with a DB9 connector attached. Contact PNI Corporation for
purchasing information.

PIN Wire Color Description

1 Black Power Ground

2 Gray NC

3 Green RS232 Ground

4 Orange NC

5 Violet NC

6 Brown NC

7 Yellow TxD (Output of TCM)

8 Blue RxD (Input of TCM)

9 Red 5 VDC

 TCM3/5 Pin Descriptions

 Page 5 of 48

Electrical Connections – TCM5L

The connector on the TCM5L is listed in the table below. The mate for the connector is from
Preci-Dip, part number 851-93-004-100001101.

PIN Description
1 Power Ground
2 5 VDC Supply
3 TxD (RS232)
4 RxD (RS232)

 TCM5L Pin Descriptions

RS-232 Serial Communication Interface

Parameters 8 data bits, 1 start bit, 1 stop bit, no parity

Baud Rate 300 to 230400

 Page 6 of 48

TCM Studio – Evaluation Program

The TCM3/5/5L evaluation software communicates with the TCM3/5/5L through the COM port of
your PC. It puts an easy-to-use interface onto the Binary command language used by the
TCM3/5/5L, so that instead of issuing command codes manually, you can use buttons, check
boxes, and dialog boxes. It reads the Binary responses of the TCM3/5/5L output strings and
formats its sensor data into labeled and easy-to-read data fields. The program also includes the
ability to log and save the outputs of the TCM3/5/5L to a file. All of this is so that you may begin
to learn the capabilities of the TCM3/5/5L while using the TCM Studio program’s more friendly
interface. Check the PNI website for the latest updates at www.pnicorp.com.

To install the TCM Studio program onto a Windows system:

1. Drag the “TCM Studio.exe” to the working directory of your computer.
2. Move the Quesa plug-in (Quesa.dll) into either the Windows System or System32 folder.

Quesa is the OpenGL rendering engine and the 3D Model of the TCMStudio will not run
without it.

• For Windows 2000/NT copy to: /WinNT/System32 folder
• For Windows XP copy to: /Windows/System32 folder

To install the TCM Studio program onto a Mac OSX system:

1. Drag the “TCM Studio” to the working directory of your computer.
2. Move the Quesa plug-in (Quesa) to: /Library/CFMSupport

[Connection Tab]

Initial Connection:

1. Select 38400 as the baud rate.
2. Select the serial port the unit is plugged into.
3. Click on the <Connect> button.
4. Once a connection is made the “Connected” light will turn green and the Module,

Firmware Version and Serial Number will be displayed.

Change Baud Rate:

1. Select new baud rate for the module.
2. Click on the <Power Down> button.
3. Select same baud rate for the computer.
4. Click on the <Power Up> button.

Change Modules:

Once connection has been made, the TCM Studio will remember the last settings. Any time a
module is switched out, clicking on the <Connect> button once the new module is attached will
reestablish a connection as long as the module baud rate is the same as the previous unit.

 Page 7 of 48

[Configuration Tab]

 Note: No settings will be changed in the unit until the <SAVE> button has been selected.

Mounting Options:

Note: If the selection is grayed out or not listed the unit connected does not support this
feature. Refer to “Mechanically Mounting – mounting option” section for additional
information on mounting options.

Standard: When selected the unit is to be mounted with the main board in a horizontal
position (the Z axis magnetic sensor is vertical).

Standard 90 Degrees: When selected the unit is to be mounted with the main board in a
horizontal position but rotated so the arrow is pointed 90 degrees clockwise from the front of
the host system.

Standard 180 Degrees: When selected the unit is to be mounted with the main board in a
horizontal position but rotated so the arrow is pointed 180 degrees from the front of the host
system.

Standard 270 Degrees: When selected the unit is to be mounted with the main board in a
horizontal position but rotated so the arrow is pointed 270 degrees clockwise from the front of
the host system.

X Sensor Up: When selected the unit is to be mounted with the main board in a vertical
position (the X axis magnetic sensor is vertical).

X Sensor Up Plus 90 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the X axis magnetic sensor is vertical) and rotated 90 degrees
clockwise from the front of the host system.

X Sensor Up Plus 180 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the X axis magnetic sensor is vertical) and rotated 180 degrees
from the front of the host system.

X Sensor Up Plus 270 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the X axis magnetic sensor is vertical) and rotated 270 degrees
clockwise from the front of the host system.

Y Sensor Up: When selected the unit is to be mounted with the main board in a vertical
position (the Y axis magnetic sensor is vertical).

Y Sensor Up Plus 90 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Y axis magnetic sensor is vertical) and rotated 90 degrees
clockwise from the front of the host system.

Y Sensor Up Plus 180 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Y axis magnetic sensor is vertical) and rotated 180 degrees
from the front of the host system.

Y Sensor Up Plus 270 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Y axis magnetic sensor is vertical) and rotated 270 degrees
clockwise from the front of the host system.

Z Sensor Down: When selected the unit is to be mounted with the main board in a vertical
position (the Z axis magnetic sensor is vertical).

 Page 8 of 48

Z Sensor Down Plus 90 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Z axis magnetic sensor is vertical) and rotated 90 degrees
clockwise from the front of the host system.

Z Sensor Down Plus 180 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Z axis magnetic sensor is vertical) and rotated 180 degrees
from the front of the host system.

Z Sensor Up Plus 270 Degrees: When selected the unit is to be mounted with the main
board in a vertical position (the Z axis magnetic sensor is vertical) and rotated 270 degrees
clockwise from the front of the host system.

North Reference:

Magnetic: When the “Magnetic” radio button is selected, heading will be relative to Magnetic
North.

True: When the “True” radio button is selected, heading will be relative to True North. To
use North Heading in “True” mode, the declination needs to be set in the “Declination”
window. Refer to “Using the TCM Declination Value” section for more information.

Endianess:

Use to select either Big Endian or Little Endian; default is Big Endian.

Filter Settings:

Taps: Use to select either a 0 (no filter), 4, 8, 16, or 32 samples and apply the values to a
FIR filter prior to calculating the heading. These filters allow for a much more stable reading,
but can make the acquisition of the data by the program slower. The default setting is 32.

Acquisition Parameters:

Mode:

• When “Poll” is selected the TCM Studio program requests the data from the unit, and
once it has been sent, the program will request the data again at the interval set in
the “Poll Time” box. If the time is set to 0 then the TCM Studio will request the data
as soon as the previous request has been fulfilled.

• When “Push” is selected the unit will be in Interval Mode, which is internal to the unit.

Once the unit has been set to Interval Mode and the interval time has been set in the
“Interval Time” setting box, the unit will send out the preset data at the desired
interval without prompting. If the interval is set to 0 then the unit will send the data as
soon as the previous data stream has been sent.

Acquire Time: The “Acquire Time” setting box sets the time between samples taken by the
unit. This is an internal setting that is NOT tied to the time with which the unit transmits the
data out to the program or host.

Flush Filters: The filtering is set to only update the filter with the last sample taken, for
example once the initial 32 samples are taken any new sample is added to the end with the

 Page 9 of 48

first sample being dropped. In the case where the “Acquire Time” is set to a value it would be
prudent to set the unit to flush the filter prior to calculating the heading. This flushing will
require the unit to take 32 new samples to use for the calculation.

 Note: If the “Flush Filters” checkbox is checked, it will take longer for the unit to output
 updated data.

User Cal Settings:

Stability Checking: By default the unit will wait for the readings to be stable for 3
consecutive readings when in calibration mode prior to saving the sample for use in the
calibration. This is why the unit must be held steady between points during the User
Calibration. This stability helps to ensure a proper heading and allow for higher accuracy, but
it also takes more time. If the user de-selects the check box, then the unit will NOT wait for a
stable reading and instead take a reading once the minimum change between points
threshold has been met.

Automatic Sampling: When selected the unit will take a point once the minimum change
requirement and the stability check, if selected, has been satisfied. If the user wants to have
more control over when the point will be taken then Auto Sampling should be deselected.
Once deselected, the <Take Sample> button on the Calibration tab will be active. Selecting
the <Take Sample> button will indicate to the unit to take a sample once the minimum
requirements are met.

Calibration Points: The user can select the number of points to take during a calibration.
The minimum number of points needed for a successful calibration is 12. The unit will need
to be rotated through at least 180 degrees in the horizontal plane with a minimum of at least 1
positive and 1 negative Pitch and at least 1 positive and 1 negative Roll as part of the 12
points.

Enable 3D Model: Some computer systems may not have the graphics capability to render
the 3D Model, for this reason it may be necessary to turn off this feature.

Default:

This button will set the TCM Studio program back to the factory default settings.

Revert:

This button will have the TCM Studio program read the settings from the unit and display
them on the screen.

 Page 10 of 48

[Calibration Tab]

 Note: The default settings of the unit are recommended for the highest accuracy and
 quality of calibration.

Samples:

1. Click on the <Start> button to begin.
2. To take a sample point, the unit will need to be held steady for a short time. Once the

window indicates the next number, the unit can be moved some distance and held steady
for the next sample. A minimum change of 30 degrees in heading or tilt is required for a
sample to be taken. The larger the distance between points the better. The amount of
Pitch and Roll during the calibration will determine the amount of Pitch and Roll the unit
will be able to compensate for during use. Once the pre-set number of samples has
been taken the calibration is complete.

 Note: The minimum points the unit can use for a successful calibration is 12. The unit
 will need to be rotated through at least 180 degrees in the horizontal plane with minimum
 of at least 1 positive and 1 negative Pitch and Roll as part of the 12 points.

Results:

1. Once the calibration is complete the “Coverage” window will indicate the quality of the

calibration. The X, Y, and Z values show a percentage of each vector that has been
covered during the calibration. The only way to get a Z value greater than 50% would be
to take some points with the unit upside-down. The value shown in µT refers to the
standard deviation of the measured samples when compared to the calculated values.
The smaller the number the better. If a better score is needed, click on the <Start>
button to begin a new calibration.

 Note: The value in µT only refers to the quality of the calibration and NOT the
 accuracy of the heading. It is possible to have a “good” calibration but poor
 accuracy if the field the unit is exposed to during use is not the same as that
 which was present during the calibration.

2. If the calibration is sufficient then click on the <Save> button to save the calibration. If
this button is not selected then the unit will need to be recalibrated after a power cycle.

Current Configuration:

Stability Checking: Indicates if the Stability Checking option has been selected.

Automatic Sampling: Indicates if the Automatic Sampling option has been selected.

Number of samples is: Indicates the number of samples to be taken for the current
calibration.

Options:

Audible Feedback: If selected the TCM Studio will give an audible signal once a calibration
point has been taken.

 Page 11 of 48

Clear:

This button will clear the user calibration in the unit. Once selected, the unit will revert back
to its factory calibration.

[Test Tab]

Current Reading:

Once the <GO> button is selected the unit will begin outputting Heading, Pitch and Roll
information. Selecting the <Stop> button or changing tabs will halt the output of the unit.

Contrast:

Reverses the background color of the current reading window.

Acquisition Settings:

This window indicates the pertinent setting information.

3D Model:

The helicopter will follow the movement of the attached module and give a clear
representation of the module’s orientation.

[Data Logger Tab]

1. Select the data to log in the “Data” window.
2. Use Shift-Ctrl-Click and Ctrl-Click to select multiple items.
3. Click on the <GO> button to start logging; click the <STOP> button to stop logging.
4. Click on the <Export> button to save the data to a file.
5. Click on the <Clear> button to clear the data from the window.

Note: The data logger use ticks for time reference. A tick is 1/60 second.

 [System Log Tab]

Export:

Select the <Export> button to save the system log to a file.

[Graph]

The graph provides a 2-axis (X,Y) plot of the measured field strength. The graph can be used to
visually see hard and soft iron effects within the environment measured by the TCM module as
well as corrected output after a user calibration has been performed.

 Page 12 of 48

Where to install the TCM3/5/5L

The TCM3/5/5L’s magnetometers’ wide dynamic range and its sophisticated calibration
algorithms allow it to operate in many environments. For optimal performance however, you
should mount the TCM3/5/5L with the following considerations in mind:

The TCM3/5/5L’s magnetometers should not saturate

The TCM3/5/5L can be user calibrated to correct for large static magnetic fields created by the
host system. However, each axis of the TCM3/5/5L’s magnetometers has a maximum dynamic
range of ±80 µT; if the total field exceeds this value for any axis, the TCM3/5/5L will not give
accurate heading information. When mounting the TCM3/5/5L, consider the effect of any sources
of magnetic fields in the local environment that when added to the earth’s field may saturate the
TCM3/5/5L’s sensors. For example, large masses of ferrous metals such as transformers and
vehicle chassis, large electric currents, permanent magnets such as electric motors, and so on.

Locate the TCM3/5/5L away from local sources of changing magnetic fields

It is not possible to calibrate for changing magnetic anomalies. Thus, for greatest accuracy, keep
the TCM3/5/5L away from sources of local magnetic anomalies that will change with time; for
instance, electric equipment that will be turned on and off or nearby ferrous bodies that will be
changing positions. Make sure the TCM3/5/5L is not mounted close to cargo or payload areas
that may be loaded with large sources of local magnetic fields.

The TCM3/5/5L should be mounted in a physically stable location

Choose a location that is isolated from excessive shock, oscillation, and vibration.

 Page 13 of 48

Mechanically mounting the TCM3/5

Refer to the TCM3/5/5L Dimensional Specification later in this manual for the TCM3/5/5L board
dimensions and the orientation of the reference frame.
The TCM3/5/5L is factory calibrated with respect to the mounting holes, as shown below, thus it
must be aligned within the host system with respect to these mounting holes, not the board edges.

TCM3/5

TCM5L

 Page 14 of 48

Mounting Options

The TCM3/5/5L is able to be mounted in various positions to allow for greater flexibility. All
reference points are based on the white silk-screened arrow on the top side of the board.
Note: The board depicted below is for illustration purposes only and does not show the actual
TCM3/5/5L board.

TCM3/5 Mounting Options

 Page 15 of 48

TCM5L Mounting Options

 Page 16 of 48

Using the TCM3/5/5L

User Calibration

All compasses can perform well in a controlled environment, where the ambient magnetic field
consists solely of the earth’s field. In most practical applications, however, an electronic compass
module will be mounted in a host system such as a vehicle that can contain large sources of local
magnetic fields: ferrous metal chassis, transformer cores, electrical currents, and permanent
magnets in electric motors.
By performing the user calibration procedure, you allow the TCM3/5/5L to identify the major
sources of these local magnetic anomalies and subsequently cancel out their effects when
measuring the earth’s magnetic field for computing compass headings. When you perform the
user calibration procedure, the TCM3/5/5L takes a series of magnetic field measurements. It
analyzes these total field measurements in order to identify the components that are created by
the earth’s field, which is the desired signal, from those components that are generated by the
local environment, which we wish to subtract out.
The end goal of the procedure for the TCM3/5/5L is to have an accurate measurement of the
static three-dimensional magnetic field vector generated by its host system at its mounting
location. This vector is subsequently subtracted out of run-time field measurement to yield the
resultant earth’s field vector.
One major benefit from the TCM3/5/5L’s triaxial magnetometer/triaxial accelerometer system
configuration is its ability to compensate for distortion effects in all orientations throughout its
usable tilt range. As we have mentioned, a compass must measure the local field vector
generated by the host system at its current position within the system in order to accurately
calibrate. Because the TCM3/5/5L’s magnetometer is strapped-down, or fixed with respect to its
host system, this local field vector does not change as the host system’s attitude changes,
allowing the TCM3/5/5L to accurately compensate in all pitch and roll orientations. Gimbaled
fluxgates, for instance, are unable to provide accurate calibration in non-level orientations
because its magnetometers, being gimbaled, change position with respect to the host system as
attitude changes. This presents a different local distortion field than that measured during
calibration.

Key Points

• The minimum points the unit can use for a successful calibration is 12.
• The unit will need to be rotated through at least 180 degrees in the horizontal plane with

minimum of at least 1 positive and 1 negative Pitch and Roll.
• Tilt as much as possible during the calibration. This allows the compass to take full

advantage of the 3-axis magnetometer.
• You are trying to get an even sampling of the magnetic field over as many headings and

tilts as possible, including upside down if possible.
• Pay attention to the coverage percentage. The lower the percentage the less accurate

the compass.

 Page 17 of 48

Calibration Theory

The exact calibration method will depend on the actual settings of the calibration parameters.
An example of the various settings and their effect can be seen in the TCM Studio –
Evaluation Software section.

The main object of the calibration is to allow the TCM3/5/5L to calibrate out any distortions to
the magnetic field caused by the host system. To that end the TCM3/5/5L needs to be
mounted within the host system and the entire application needs to be moved as a single unit
during the calibration. Movement should include at least 180˚ of horizontal rotation, but to
achieve the highest accuracy a full 360˚ of horizontal rotation with as many different tilt
angles as possible during the rotation is required.

To achieve the highest accuracy throughout the TCM3/5/5L’s entire tilt range, the unit will
need to be tilted through the entire range. For example, if the unit is only tilted through 40˚ of
pitch and roll, then the heading information from the TCM3/5/5L will only be accurate through
40˚ of pitch and roll. For maximum performance the TCM3/5/5L should be exposed to tilt
angles covering a full 360°, meaning upside down.

Hard and Soft Iron Effects

Hard iron distortions are caused by permanent magnets and magnetized steel or iron object
within close proximity to the sensors. This type of distortion will remain constant and in a fixed
location relative to the sensors for all heading orientations. Hard-iron distortions will add a
constant magnitude field component along each axis of sensor output and can be easily
compensated for using a simple saturation method.
Soft-iron distortions are the result of interactions between the Earth’s magnetic field and any
magnetically “soft” material within close proximity to the sensors. In technical terms, soft materials
have a high permeability. The permeability of a given material is a measure of how well it serves
as a path for magnetic lines of force, relative to air, which has an assigned permeability of one.

The TCM3/5/5L 3-axis digital compass features soft-iron and hard-iron correction.

 Page 18 of 48

Pitch and Roll

The TCM3/5/5L uses accelerometers to measure the orientation of the compass with respect to
gravity. Since the compass also measures the complete magnetic field, the TCM3/5/5L can
correct for the tilt of the compass to provide an accurate heading.
The TCM3/5/5L utilizes Euler angles as the method for determining accurate orientation. This
method is the same used in aircraft orientation where the outputs are Heading (Yaw), Pitch and
Roll. When using Euler angles pitch and roll are defined as the angle rotated around an axis
through the center of the fuselage; pitch is rotation around an axis through the center of the wings.
These two rotations are independent of each other since the rotation axes rotate with the plane
body.
For the TCM3/5/5L a positive pitch is when the front edge of the board is rotated upward and a
positive roll is when the right edge of the board is rotated downward.

TCM3/5 Standard Mounting

TCM5L Standard Mounting

 Page 19 of 48

Declination Value

Declination, also called magnetic variation, is the difference between true and magnetic north,
relative to a point on the earth. It is measured in degrees east or west of true north. Correcting for
declination is accomplished by storing the correct declination angle, and then changing the
heading reference from magnetic north to true north. Declination angles vary throughout the world,
and change very slowly over time. For the greatest possible accuracy, go to the National
Geophysical Data Center web page below to get the declination angle based on your latitude and
longitude: http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/fldsnth1.pl

Other Limitations

As discussed, the TCM3/5/5L models local disturbances as a static magnetic vector contribution
to the earth’s field. Any local fields, which are not static, will create errors. You cannot calibrate
for anomalies that are not fixed with respect to the compass. For example, you may know that the
TCM3/5/5L will be used in close proximity to other vehicles. You cannot calibrate for the effects of
these other vehicles, as they will be moving with respect to the TCM3/5/5L. This is a limitation
universal to all compasses. Consider, therefore, the TCM3/5/5L’s position relative to any potential
sources of field that will not be static: magnetic cargo or payloads that may be placed in close
proximity, fans or other electrical equipment that may be turned on and off, and so on.

The TCM3/5/5L can calibrate for any environment that creates a magnetic field that does not
exceed the dynamic range of its magnetometers.

 Page 20 of 48

Binary Protocol – RS232 Interface
Datagram Structure

Transport Layer for RS-232 communication:

ByteCount
(UInt16)

Packet Frame
(1 - 4092 UInt8)

CRC-16
(UInt16)

Payload
(1 - 4091 UInt8)

Frame
ID

(UInt8)

Note:

1. ByteCount is the total number of bytes in the packet including the CRC-16
2. CRC-16 is calculated starting from the ByteCount to the last byte of the Packet Frame

(see included C function at end of document).
3. ByteCount and CRC-16 are always transmitted in BIG ENDIAN.

Parameter Formats

Floating Point
The floating-point based parameters are in the IEEE standard format, ANSI/IEEE Std 754-1985.

64-Bit (double precision floating point)
Shown below is the 64-bit float format in big endian, in little endian bytes are in reverse order in 4
byte groups (ie: big endian:ABCDEFGH little endian: DCBA HGFE).

ExponentS Mantissa

63 62 5251 0

The value (v) is determined as (if and only if 0 < Exponent < 2047): v = (-1)S * 2(Exponent-1023) *
1.Mantissa

32-Bit (single precision floating point)
Shown below is the 32-bit float format in big endian, in little endian all 4 bytes are in reverse order
(LSB first).

ExponentS Mantissa

3130 2322 0

The value (v) is determined as (if and only if 0 < Exponent < 255): v = (-1)S * 2(Exponent-127) *
1.Mantissa

Note: Please refer to ANSI/IEEE Std 754-1985 for more information. It is also recommended that you refer to the
compiler you are using on how it implements floating-point formats.

 Page 21 of 48

Signed 32-bit Integer (SInt32)
SInt32 based parameters are signed 32 bit numbers (2’s compliment). Bit 31 represents the sign
of the value (0=positive, 1=negative)

msb

31 24 23 16 15 8

lsb

7 0

Big Endian

lsb

7 0 15 8 23 16

msb

31 24

Little Endian

Signed 16-bit Integer (SInt16)
SInt16 based parameters are signed 16 bit numbers (2’s compliment). Bit 15 represents the sign
of the value (0=positive, 1=negative)

Big Endian

msb

15 8

lsb

7 0

Little Endian

lsb

7 0

msb

15 8

Signed 8-bit Integer (SInt8)
UInt8 based parameters are unsigned 8-bit numbers. Bit 7 represents the sign of the value
(0=positive, 1=negative)

byte

7 0

 Page 22 of 48

Unsigned 32-bit Integer (UInt32)
UInt32 based parameters are unsigned 32 bit numbers.

msb

31 24 23 16 15 8

lsb

7 0

Big Endian

lsb

7 0 15 8 23 16

msb

31 24

Little Endian

Unsigned 16-bit Integer (UInt16)
UInt16 based parameters are unsigned 16 bit numbers.

Big Endian

msb

15 8

lsb

7 0

Little Endian

lsb

7 0

msb

15 8

Unsigned 8-bit Integer (UInt8)
UInt8 based parameters are unsigned 8-bit numbers.

byte

7 0

Boolean
Boolean is a 1-byte parameter that MUST have the value 0 (false) or 1 (true).

byte

7 0

 Page 23 of 48

Commands & Communication Frames

Overview:

Frame
ID Command Description

1 kGetModInfo Queries the modules type and firmware revision number.
2 kModInfoResp Response to kGetModInfo
3 kSetDataComponents Sets the data components to be output.
4 kGetData Queries the module for data
5 kDataResp Response to kGetData
6 kSetConfig Sets internal configurations in the module
7 kGetConfig Queries the module for the current internal configuration value
8 kConfigResp Response to kGetConfig
9 kSave Commands the module to save internal and user calibration
10 kStartCal Commands the module to start user calibration
11 kStopCal Commands the module to stop user calibration

12 kSetParam Sets the FIR filter settings for the magnetometer &
accelerometer sensors.

13 kGetParam Queries for the FIR filter settings for the magnetometer &
accelerometer sensors.

14 kParamResp Contains the FIR filter settings for the magnetometer &
accelerometer sensors.

15 kPowerDown Used to completely power-down the module
16 kSaveDone Response to kSave
17 kUserCalSampCount Sent from the module after taking a calibration sample point
18 kUserCalScore Contains the calibration score
19 kSetConfigDone Response to kSetConfig
20 kSetParamDone Response to kSetParam
21 kStartIntervalMode Commands the module to output data at a fixed interval
22 kStopIntervalMode Commands the module to stop data output at a fixed interval
23 kPowerUp Sent after wake up from power down mode
24 kSetAcqParams Sets the sensor acquisition parameters
25 kGetAcqParams Queries for the sensor acquisition parameters
26 kAcqParamsDone Response to kSetAcqParams
27 kAcqParamsResp Response to kGetAcqParams
28 kPowerDownDone Response to kPowerDown
29 kFactoryUserCal Clears user calibration coefficients
30 kFactorUserCalDone Response to kFactoryUserCal
31 kTakeUserCalSample Commands the unit to take a sample during user calibration

 Page 24 of 48

kGetModInfo (frame ID 1)

This frame queries the module's type and firmware revision number. The frame has no payload.
The complete packet for the kGetModInfo command would be:

0005 01 EFD4

with 0005 being the byte count

01 kGetModInfo command
EFD4 CRC-16 checksum

kModInfoResp (frame ID 2)

This frame is the response to kGetModInfo frame. The payload contains the module type
identifier followed by the firmware revision number.

Type Revision

 UInt32 UInt32

Payload

2

 Frame ID

kUlnt8

kSetDataComponents (frame ID 3)

This frame sets the data components in the module's data output. This is not a query for the
module's data (see kGetData). The first byte of the payload indicates the number of data
components followed by the data component IDs.

Count ID1 ID2 ID3 IDCount

 UInt8 UInt8 UInt8 UInt8 UInt8

Payload

Example:

To query the heading and pitch, the payload should contain:

2 5 24

ID Count Heading ID Pitch ID

Payload

3

Frame ID

When querying for data (kGetData frame), the sequence of the data component output follows
the sequence of the data component IDs as set in this frame.

 Page 25 of 48

Component Identifiers

Component DataComponentID Format Units Range

kHeading 5 Float32 degrees 0.0˚ to 359.9˚

kTemperature 7 Float32 ˚ Celsius -40˚ to 85˚

kDistortion 8 Boolean True or False False (Default) =
no distortion

kCalStatus 9 Boolean True or False False (Default) =
not calibrated

kPCalibrated 21 Float32 mG -1.0 to 1.0

kRCalibrated 22 Float32 mG -1.0 to 1.0

kIZCalibrated 23 Float32 mG -1.0 to 1.0

kPAngle 24 Float32 degress -90.0˚ to 90.0˚

kRAngle 25 Float32 degrees -180.0˚ to 180.0˚

KXAligned 27 Float32 µT

KYAligned 28 Float32 µT

KZAligned 29 Float32 µT

Component Types for kSetDataComponents & kDataResp frames

kHeading
Compass heading output.

kTemperature
This is sampled from the internal temperature sensor of the module. Its value is in ° Celsius and
has an accuracy of +/- 3° C.

kDistortion
Read only flag that indicates that at least one magnetometer axis reading is beyond +/- 80 µT.

kCalStatus
Read only flag that indicates user calibration status. False (Default) = Not calibrated.

kPCalibrated, kRCalibrated & kIZCalibrated
Factory calibrated Earth’s acceleration vector (G) component output.

kPAngle, kRAngle
Pitch and Roll angle outputs. Pitch is equal to -90.0˚ to 90.0˚ and Roll is equal to -180.0˚ to
180.0˚.

kXAligned, kYAligned, kZAligned
User calibration Earth’s magnetic field (M) vector component output.

 Page 26 of 48

kGetData (frame ID 4)

This frame queries the module for data. The frame has no payload. The complete packet for the
kGetModInfo command would be:

00 05 04 BF71

with 00 05 being the byte count

04 kGetData command
BF71 CRC-16 checksum

kDataResp (frame ID 5)

The frame is the response to kGetData frame. The first byte of the payload indicates the number
of data components then followed by the data component ID-value pairs. The sequence of the
components Ids follows the sequence set in the kSetDataComponents frame.

Count ID1 ValueID1 ID2 ValueID2

 UInt8 UInt8 ID
Specific UInt8 ID

Specific

IDCount ValueIDCount

 UInt8 ID
Specific

Payload

Example:

If the response contains the heading and pitch output, the payload would look like:

2 5 359.9 24 10.5

ID Count Heading ID Heading
Output

(Float32)

Pitch ID Pitch
Output

(Float32)

kSetConfig (frame ID 6)

This frame sets internal configurations in the module. The first byte of the payload is the
configuration ID followed by a format specific value. These configurations can only be set one at
time.

Config ID Value

 UInt8 ID
Specific

Payload

Example:

To configure the declination, the payload would look like:

 Page 27 of 48

1 10.0

Declination ID Declination
Angle

(Float32)

Configuration Identifiers

Settings Configuration
ID Format Units/ Range Default

Values
kDeclination 1 Float32 -180˚ to 180˚ 0˚

kTrueNorth 2 Boolean True or False False

kBigEndian 6 Boolean True or False True

kMountingRef 10 UInt8

 1 = Standard
 2 = X axis up
 3 = Y axis up
 4 = -90° heading offset
 5 = -180° heading offset
 6 = -270° heading offset
 7 = Z down
 8 = X + 90°
 9 = X + 180°
10 = X + 270°
11 = Y + 90°
12 = Y + 180°
13 = Y + 270°
14 = Z down + 90°
15 = Z down + 180°
16 = Z down + 270°

1

kUserCalStableCheck 11 Boolean True or False True

kUserCalNumPoints 12 UInt32 12 – 50 50

kUserCalAutoSampling 13 Boolean True or False True

kBaudRate 14 UInt8

0 – 300
1 – 600
2 – 1200
3 – 1800
4 – 2400
5 – 3600
6 – 4800
7 – 7200

8 – 9600
9 – 14400
10 – 19200
11 – 28800
12 – 38400
13 – 57600
14 – 115200
15 – 230400

12

kDeclination
This sets the declination angle to determine True North heading. Positive declination is easterly
declination and negative is westerly declination. This is not applied until TrueNorth is set to true.

kTrueNorth
Flag to set compass heading output to true north heading by adding the declination angle to the
magnetic north heading.

kBigEndian
Flag to set the Endianness of packets

 Page 28 of 48

kMountingRef
This sets the reference orientation for the module.

• Standard: When selected the unit is to be mounted with the main board in a
horizontal position (the Z axis magnetic sensor is vertical).

• X Sensor Up: When selected the unit is to be mounted with the main board in a
vertical position (the X axis magnetic sensor is vertical).

• Y Sensor Up: When selected the unit is to be mounted with the main board in a
vertical position (the Y axis magnetic sensor is vertical).

• Standard 90 Degrees: When selected the unit is to be mounted with the main board
in a horizontal position but rotated so the arrow is pointed 90 degrees
counterclockwise to the front of the host system.

• Standard 180 Degrees: When selected the unit is to be mounted with the main
board in a horizontal position but rotated so the arrow is pointed 180 degrees
counterclockwise to the front of the host system.

• Standard 270 Degrees: When selected the unit is to be mounted with the main
board in a horizontal position but rotated so the arrow is pointed 270 degrees
counterclockwise to the front of the host system.

kUserCalStableCheck
This flag is used during user calibration. If set to FALSE, the module will take a point if the
magnetic field has changed more than 23 µT in either axis. If set to TRUE the unit will take a
point if the magnetic field has a stability of 30µT in each direction and the previous point changed
more than 5µT and acceleration vector delta within 2 mg.

kUserCalNumPoints
The maximum number samples taken during user calibration.

kUserCalAutoSampling
This flag is used during user calibration. If set to TRUE, the module continuously takes calibration
sample points until the set number of calibration samples. If set to FALSE, the module waits for
kTakeUserCalSample frame to take a sample with the condition that a magnetic field vector
component delta is greater than 5 micro Tesla from the last sample point.

kBaudRate
Baud rate index value. A power-down power-up cycle is required when changing the baud rate.

kGetConfig (frame ID 7)

This frame queries the module for the current internal configuration value. The payload contains
the configuration ID requested.

Config ID

 UInt8

Payload

 Page 29 of 48

kConfigResp (frame ID 8)

This frame is the response to kGetConfig frame. The payload contains the configuration ID and
value.

Config ID Value

 UInt8 ID
Specific

Payload

Example:
If a request to get the set declination angle, the payload would look like:

1 10.0

Declination ID Declination
Angle

(Float32)

kSave (frame ID 9)

This frame commands the module to save internal configurations and user calibration to non-
volatile memory. Internal configurations and user calibration is restored on power up. The frame
has no payload. This is the ONLY command that causes the module to save information into non-
volatile memory.

kStartCal (frame ID 10)

This frame commands the module to start user calibration with the current sensor acquisition
parameters, internal configurations and FIR filter settings.

kStopCal (frame ID 11)

This frame commands the module to stop calibration points sampling and calculate the calibration
score and coefficients.

 Page 30 of 48

kSetParam (frame ID 12)

This frame sets the FIR filter settings for the magnetometer and accelerometer sensors. The
second byte of the payload indicates the x vector component of either the magnetometer or
accelerometer. This is to differentiate whether to apply the filter settings to the magnetometer or
accelerometer. The third byte in the payload indicates the number of FIR taps to use then
followed by the filter taps. Each tap is a Float64. The maximum number of taps that can be set is
32 and the minimum is 0 (no filtering). (See Recommended FIR Filter Taps).

Parameter ID Axis ID Count Value1 Value2

 UInt8 UInt8 UInt8 ID
Specific

ID
Specific

Value3 ValueCount

ID
Specific

ID
Specific

Payload

Parameter Identifiers

Settings Parameter ID Format

KFIRConfig* 3 AxisID (UInt8) + Count (UInt8) + Value (Float64) + Value (Float64) + …

Recommended FIR Filter Tap Value

2 Count 4 Tap Filter 8 Tap Filter 16 Tap Filter 32 Tap Filter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

04.6708657655334e-2
04.5329134234467e-1
04.5329134234467e-1
04.6708657655334e-2

01.9875512449729e-2
06.4500864832660e-2
01.6637325898141e-1
02.4925036373620e-1
02.4925036373620e-1
01.6637325898141e-1
06.4500864832660e-2
01.9875512449729e-2

07.9724971069144e-3
01.2710056429342e-2
02.5971390034516e-2
04.6451949792704e-2
07.1024151197772e-2
09.5354386848804e-2
01.1484431942626e-1
01.2567124916369e-1
01.2567124916369e-1
01.1484431942626e-1
09.5354386848804e-2
07.1024151197772e-2
04.6451949792704e-2
02.5971390034516e-2
01.2710056429342e-2
07.9724971069144e-3

01.4823725958818e-3
02.0737124095482e-3
03.2757326624196e-3
05.3097803863757e-3
08.3414139286254e-3
01.2456836057785e-2
01.7646051430536e-2
02.3794805168613e-2
03.0686505921968e-2
03.8014333463472e-2
04.5402682509802e-2
05.2436112653103e-2
05.8693165018301e-2
06.3781858267530e-2
06.7373451424187e-2
06.9231186101853e-2
06.9231186101853e-2
06.7373451424187e-2
06.3781858267530e-2
05.8693165018301e-2
05.2436112653103e-2
04.5402682509802e-2
03.8014333463472e-2
03.0686505921968e-2
02.3794805168613e-2
01.7646051430536e-2
01.2456836057785e-2
08.3414139286254e-3
05.3097803863757e-3
03.2757326624196e-3
02.0737124095482e-3
01.4823725958818e-3

 Page 31 of 48

kGetParam (frame ID 13)

This frame queries the FIR filter settings for the magnetometer and accelerometer sensors. The
first byte of the payload is the kFIRConfig ID followed by the vector axis ID (byte).

Parameter ID Axis ID

 UInt8 UInt8

Payload

kParamResp (frame ID 14)

This frame contains the current FIR filter settings for either magnetometer or accelerometer
sensors. The second byte of the payload is the vector axis ID, the third byte is the number of filter
taps then followed by the filter taps. Each tap is a Float64.

Parameter ID Axis ID Count Value1 Value2

 UInt8 UInt8 UInt8 Filter Top
Value

ID
Specific

Value3 ValueCount

ID
Specific

ID
Specific

Payload

kPowerDown (frame ID 15)

This frame is used to completely power-down the module. The frame has no payload. The unit
will power down all peripherals including the RS-232 driver but the driver chip has the feature to
keep the Rx line enabled. Any character sent to the module causes it to exit power down mode. It
is recommended to send the byte oxFFh.

kSaveDone (frame ID 16)

This frame is the response to kSave frame. The payload contains a UInt16 error code, 0000h
indicates no error, 0001h indicates error when attempting to save data into non-volatile memory.

Error code

UInt16

Payload

Axis IDs
kXAxis = 1
kYAxis = 2
kZAxis = 3
kPAxis = 4
kRAxis = 5
KIZAxis = 6

 Page 32 of 48

kUserCalSampCount (frame ID 17)

This frame is sent from the module after taking a calibration sample point. The payload contains
the sample count with the range of 1 to 50

Sample count

UInt32

Payload

kUserCalScore (frame ID 18)

This frame's payload contains the calibration score, which is a series of Float32 values:
stdDevErr, xCoverage, yCoverage, zCoverage, magBearth, magHI.

stdDevErr xCoverage yCoverage zCoverage magBearth

Float32 Float32 Float32 Float32 Float32

magHI

Float32

Payload

StdDevErr : The compass samples magnetic field standard deviation error.

XCoverage : Percentage of how much of the X magnetometer axis was covered by the sampling.

YCoverage : Percentage of how much of the Y magnetometer axis was covered by the sampling.

ZCoverage : Percentage of how much of the Z magnetometer axis was covered by the sampling.

MagBearth : The calculated Earth's magnetic field magnitude from the calibration samples.

MagHI : Reserved value; always 0.

kSetConfigDone (frame ID 19)

This frame is the response to kSetConfig frame. The frame has no payload.

kSetParamDone (frame ID 20)

This frame is the response to kSetParam frame. The frame has no payload.

kStartIntervalMode (frame ID 21)

The frame commands the module to output data (push mode) at a fixed time interval (See
kSetAcqParams). The frame has no payload.

 Page 33 of 48

kStopIntervalMode (frame ID 22)

This frame commands the module to stop data output at a fixed time interval. The frame has no
payload.

kPowerUp (frame ID 23)

This frame is sent from the module after wake up from power down mode. The frame has no
payload. Since the module was previously powered down which drives the RS-232 driver TX line
low (break signal), it is recommended to disregard the first byte.

kSetAcqParams (frame ID 24)

This frame sets the sensor acquisition parameters in the unit. The payload should contain the
following:

PollingMode FlushFilter SensorAcqTime IntervalRespTime

UInt8 UInt8 Float32 Float32

Payload

PollingMode
Flag to set push/pull data output mode. Default is TRUE (pull mode).

FlushFilter
Flag to set FIR filter flushing every sample. Default is FALSE (no flushing).

SensorAcqTime
The internal time interval between sensor acquisitions. Default is 0.0 seconds, this means
that the module will reacquire immediately right after the last acquisition.

IntervalRespTime
The time interval the module output data in push mode. Default is 0.0 seconds, this
means that the module will push data out immediately after an acquisition cycle.

kGetAcqParams (frame ID 25)

This frame queries the unit for the acquisition parameters. The frame has no payload.

kAcqParamsDone (frame ID 26)

This frame is the response to kSetAcqParams frame. The frame has no payload.

 Page 34 of 48

kAcqParamsResp (frame ID 27)

This frame is the response to kGetAcqParams frame. The payload should contain the same
payload as the kSetAcqParams frame.

kPowerDownDone (frame ID 28)

This frame is the response to kPowerDown frame. This indicates that the unit successfully
received the kPowerDone frame and is in the process of powering down. The frame has no
payload.

kFactoryUserCal (frame ID 29)

This frame clears the user calibration coefficients. The frame has no payload.

kFactoryUserCalDone (frame ID 30)

This frame is the response to kFactoryUserCal frame. The frame has no payload.

kTakeUserCalSample (frame ID 31)

This frame commands the unit to take a sample during user calibration. The frame has no
payload.

 Page 35 of 48

TCM3/5/5L Code Examples

Binary TCM High Performance Protocol C Header File & CRC-16
Function

// type declarations
typedef struct
{
 UInt8 pollingMode, flushFilter;
 Float32 sensorAcqTime, intervalRespTime;
} __attribute__ ((packed)) AcqParams;

typedef struct
{
 Float32 stdDevErr;
 Float32 xCoverage;
 Float32 yCoverage;
 Float32 zCoverage;
 Float32 magBearth;
 Float32 reserve1;
} __attribute__ ((packed)) CalScore;

enum
{
 // Frame IDs (Commands)
 kGetModInfo = 1, // 1
 kModInfoResp, // 2
 kSetDataComponents, // 3
 kGetData, // 4
 kDataResp, // 5
 kSetConfig, // 6
 kGetConfig, // 7
 kConfigResp, // 8
 kSave, // 9
 kStartCal, // 10
 kStopCal, // 11
 kSetParam, // 12
 kGetParam, // 13
 kParamResp, // 14
 kPowerDown, // 15
 kSaveDone, // 16
 kUserCalSampCount, // 17
 kUserCalScore, // 18
 kSetConfigDone, // 19
 kSetParamDone, // 20
 kStartIntervalMode, // 21
 kStopIntervalMode, // 22
 kPowerUp, // 23
 kSetAcqParams, // 24
 kGetAcqParams, // 25
 kAcqParamsDone, // 26
 kAcqParamsResp, // 27
 kPowerDoneDown, // 28
 kFactoryUserCal, // 29
 kFactoryUserCalDone, // 30
 kTakeUserCalSample, // 31

 // Param IDs
 kFIRConfig = 1, // 3-AxisID(UInt8)+Count(UInt8)+Value(Float64)+...

 // Data Component IDs

 kHeading = 1, // 5 - type Float32
 kTemperature = 7, // 7 - type Float32
 kDistortion = 8, // 8 - type boolean
 kPCalibrated = 21, // 21 - type Float32

 Page 36 of 48

 kRCalibrated, // 22 - type Float32
 kIZCalibrated, // 23 - type Float32
 kPAngle, // 24 - type Float32
 kRAngle, // 25 - type Float32
 kXAligned = 27, // 27 - type Float32
 kYAligned, // 28 - type Float32
 kZAligned, // 29 - type Float32

 // Configuration Parameter IDs
 kDeclination = 1, // 1 - type Float32
 kTrueNorth, // 2 - type UInt8
 kMountingRef = 10, // 10 - type UInt8
 kUserCalStableCheck, // 11 - type boolean
 kUserCalNumPoints, // 12 - type UInt8
 kUserCalAutoSampling, // 13 – type boolean
 kBaudRate, // 14 – UInt8

 // Mounting Reference IDs
 kMountedStandard = 1, // 1
 kMountedXUp, // 2
 kMountedYUp, // 3
 kMountedStdPlus90, // 4
 kMountedStdPlus180, // 5
 kMountedStdPlus270, // 6

 // Result IDs
 kErrNone = 0, // 0
 kErrSave, // 1
};

// function to calculate CRC-16
UInt16 CRC(void * data, UInt32 len)
{
 UInt8 * dataPtr = (UInt8 *)data;
 UInt32 index = 0;
 // Update the CRC for transmitted and received data using
 // the CCITT 16bit algorithm (X^16 + X^12 + X^5 + 1).
 UInt16 crc = 0;
 while(len--)
 {
 crc = (unsigned char)(crc >> 8) | (crc << 8);
 crc ^= dataPtr[index++];
 crc ^= (unsigned char)(crc & 0xff) >> 4;
 crc ^= (crc << 8) << 4;
 crc ^= ((crc & 0xff) << 4) << 1;
 }
 return crc;
}

 Page 37 of 48

Binary TCM Protocol C++ Communication Examples

The following 4 example files, CommProtocol.h, CommProtocol.cp, TCM5.h and TCM5.cp would
be used together for proper communication with a TCM3, TCM5 or TCM5L module.

CommProtocol.h File:

#pragma once

#include "SystemSerPort.h"
#include "Processes.h"

//
// This file contains objects used to handle the serial communication with the unit.
//

//
// CommHandler is a base class that provides a callback for incoming messages.
//
class CommHandler
{
 public:
 // Call back to be implemented in derived class.
 virtual void HandleComm(UInt8 frameType, void * dataPtr = NULL, UInt16 dataLen =
0) {}
};

//
// CommProtocol handles the actual serial communication with the unit.
// Process is a base class that provides CommProtocol with cooperative parallel
processing. The Control method will be
// called by a process manager on a continuous basis.
//
class CommProtocol : public Process
{
 public:
 enum
 {
 // Frame IDs (Commands)
 kGetModInfo = 1, // 1
 kModInfoResp, // 2
 kSetDataComponents, // 3
 kGetData, // 4
 kDataResp, // 5

 // Data Component IDs

 kHeading = 5, // 5 - type Float32
 kTemperature = 7, // 7 - type Float32
 kPCalibrated = 21, // 21 - type Float32
 kRCalibrated, // 22 - type Float32
 kIZCalibrated, // 23 - type Float32
 kPAngle, // 24 - type Float32
 kRAngle, // 25 - type Float32
 };

 enum
 {
 kBufferSize = 512, // maximum size of our input buffer
 kPacketMinSize = 5 // minimum size of a serial packet
 };

 // SerPort is a serial communication object abstracting the hardware
implementation
 CommProtocol(CommHandler * handler = NULL, SerPort * serPort = NULL);

 void Init(UInt32 baud = 38400);

 void SendData(UInt8 frame, void * dataPtr = NULL, UInt32 len = 0);
 void SetBaud(UInt32 baud);

 protected:
 CommHandler * mHandler;
 SerPort * mSerialPort;

 UInt8 mOutData[kBufferSize], mInData[kBufferSize];

 Page 38 of 48

 UInt16 mExpectedLen;
 UInt32 mOutLen, mOldInLen, mTime, mStep;

 UInt16 CRC(void * data, UInt32 len);
 void Control();
};

CommProtocol.cp File:

#include "CommProtocol.h"

// import an object that will provide a 10mSec tick count through a function called
Ticks()
#include "TickGenerator.h"

//
// SerPort is an object that controls the physical serial interface. It handles sending
out
// the characters, and buffers the characters read in until we are ready for them.
//
CommProtocol::CommProtocol(CommHandler * handler, SerPort * serPort)
 : Process("CommProtocol")
{
 mHandler = handler; // store the object that will parse the data
when it is fully received
 mSerialPort = serPort;
 Init();
}

//
// Initialize the serial port and variables that will control this process
//
void CommProtocol::Init(UInt32 baud)
{
 SetBaud(baud);
 mOldInLen = 0; // no data previously received

 mStep = 1; // goto the first step of our process
}

//
// Put together the frame to send to the unit
//
void CommProtocol::SendData(UInt8 frameType, void * dataPtr, UInt32 len)
{
 UInt8 * data = (UInt8 *)dataPtr; // the data to send
 UInt32 index = 0; // our location in the frame we are putting
together
 UInt16 crc; // the CRC to add to the end of the packet
 UInt16 count; // the total length the packet will be

 count = (UInt16)len + kPacketMinSize;

 // exit without sending if there is too much data to fit inside our packet
 if(len > kBufferSize - kPacketMinSize) return;

 // Store the total len of the packet including the len bytes (2), the frame ID (1),
 // the data (len), and the crc (2). If no data is sent, the min len is 5
 mOutData[index++] = count >> 8;
 mOutData[index++] = count & 0xFF;

 // store the frame ID
 mOutData[index++] = frameType ;

 // copy the data to be sent
 while(len--) mOutData[index++] = *data++;

 // compute and add the crc
 crc = CRC(mOutData, index);
 mOutData[index++] = crc >> 8 ;
 mOutData[index++] = crc & 0xFF ;

 // Write block will copy and send the data out the serial port
 mSerialPort->WriteBlock(mOutData, index);
}

 Page 39 of 48

//
// Call the functions in serial port necessary to change the baud rate
//
void CommProtocol::SetBaud(UInt32 baud)
{
 mSerialPort->SetBaudRate(baud);
 mSerialPort->InClear(); // clear any data that was already waiting in
the buffer
}

//
// Update the CRC for transmitted and received data using the CCITT 16bit algorithm (X^16
+ X^12 + X^5 + 1).
//
UInt16 CommProtocol::CRC(void * data, UInt32 len)
{
 UInt8 * dataPtr = (UInt8 *)data;
 UInt32 index = 0;

 UInt16 crc = 0;
 while(len--)
 {
 crc = (unsigned char)(crc >> 8) | (crc << 8);
 crc ^= dataPtr[index++];
 crc ^= (unsigned char)(crc & 0xff) >> 4;
 crc ^= (crc << 8) << 4;
 crc ^= ((crc & 0xff) << 4) << 1;
 }
 return crc;
}

//
// This is called each time this process gets a turn to execute.
//
void CommProtocol::Control()
{
 // InLen returns the number of bytes in the input buffer of the serial object that
are available
 // for us to read.
 UInt32 inLen = mSerialPort->InLen();

 switch(mStep)
 {
 case 1:
 {
 // wait for length bytes to be received by the serial object
 if(inLen >= 2)
 {
 // Read block will return the number of requested (or available) bytes
that are in the
 // serial objects input buffer.
 // read the byte count
 mSerialPort->ReadBlock(mInData, 2);

 // byte count is ALWAYS transmitted in big endian, copy byte count to
mExpectedLen to
 // native endianess
 mExpectedLen = (mInData[0] << 8) | mInData[1];

 // Ticks is a timer function. 1 tick = 10msec.
 // wait up to 1/2s for the complete frame (mExpectedLen) to be
received
 mTime = Ticks() + 50 ;
 mStep++ ; // goto the next step in the process
 }
 break ;
 }

 case 2:
 {
 // wait for msg complete or timeout
 if(inLen >= mExpectedLen - 2)
 {
 UInt16 crc, crcReceived; // calculated and received crcs.

 // Read block will return the number of requested (or available) bytes
that are in the
 // serial objects input buffer.
 mSerialPort->ReadBlock(&mInData[2], mExpectedLen - 2);
 // in CRC verification, don't include the CRC in the recalculation (-
2)
 crc = CRC(mInData, mExpectedLen - 2);

 Page 40 of 48

 // CRC is also ALWAYS transmitted in big endian
 crcReceived = (mInData[mExpectedLen - 2] << 8) | mInData[mExpectedLen
- 1] ;

 if(crc == crcReceived)
 {
 // the crc is correct, so pass the frame up for processing.
 if(mHandler) mHandler->HandleComm(mInData[2], &mInData[3],
mExpectedLen - kPacketMinSize);
 }
 else
 {
 // crc's don't match so clear everything that is currently in the
input buffer since
 // the data is not reliable.
 mSerialPort->InClear();
 }

 // go back to looking for the length bytes.
 mStep = 1 ;
 }
 else
 {
 // Ticks is a timer function. 1 tick = 10msec.
 if(Ticks() > mTime)
 {
 // Corrupted message. We did not get the length we were expecting
within 1/2sec of receiving
 // the length bytes. Clear everything in the input buffer since
the data is unreliable
 mSerialPort->InClear();
 mStep = 1 ; // Look for the next length bytes
 }
 }
 break ;
 }

 default:
 break ;
 }
}

 Page 41 of 48

TCM5.h File (For TCM3, TCM5 and TCM5L Modules):

#pragma once

#include "Processes.h"
#include "CommProtocol.h"

//
// This file contains the object providing communication to the TCM3/5/5L. It will set
up the unit and parse packets received
// Process is a base class that provides TCM3/5/5L with cooperative parallel processing.
The Control method will be
// called by a process manager on a continuous basis.
//
class TCM3/5/5L : public Process, public CommHandler
{
 public:
 TCM3/5/5L(SerPort * serPort);
 ~TCM3/5/5L();

 protected:
 CommProtocol * mComm;

 UInt32 mStep, mTime, mResponseTime;

 void HandleComm(UInt8 frameType, void * dataPtr = NULL, UInt16 dataLen = 0);
 void SendComm(UInt8 frameType, void * dataPtr = NULL, UInt16 dataLen = 0);

 void Control();
};

 Page 42 of 48

TCM5.cp File (For TCM3, TCM5 & TCM5L Modules):

#include "TCM3/5/5L.h"
#include "TickGenerator.h"

const UInt8 kDataCount = 4; // We will be requesting 4 componets (Heading, pitch,
roll, temperature)
//
// This object polls the TCM3/5/5L unit once a second for heading, pitch, roll and
temperature.
//

TCM3/5/5L::TCM3/5/5L(SerPort * serPort)
 : Process("TCM3/5/5L")
{
 // Let the CommProtocol know this object will handle any serial data returned by the
unit
 mComm = new CommProtocol(this, serPort);

 mTime = 0;
 mStep = 1;
}

TCM3/5/5L::~TCM3/5/5L()
{
}

//
// Called by the CommProtocol object when a frame is completely received
//
void TCM3/5/5L::HandleComm(UInt8 frameType, void * dataPtr, UInt16 dataLen)
{
 UInt8 * data = (UInt8 *)dataPtr;

 switch(frameType)
 {
 case CommProtocol::kDataResp:
 {
 // Parse the data response
 UInt8 count = data[0]; // The number of data elements returned
 UInt32 pntr = 1; // Used to retrieve the returned elements

 // The data elements we requested
 Float32 heading, pitch, roll, temperature;

 if(count != kDataCount)
 {
 // Message is a function that displays a C formatted string (similar
to printf)
 Message("Received %u data elements instead of the %u requested\r\n",
(UInt16)count,
 (UInt16)kDataCount);
 return;
 }

 // loop through and collect the elements
 while(count)
 {
 // The elements are received as {type (ie. kHeading), data}
 switch(data[pntr++])// read the type and go to the first byte of the
data
 {
 // Only handling the 4 elements we are looking for
 case CommProtocol::kHeading:
 {
 // Move(source, destination, size (bytes)). Move copies the specified number of
 // bytes from the source pointer to the destination pointer.
 // Store the heading.
 Move(&(data[pntr]), &heading, sizeof(heading));

 // increase the pointer to point to the next data element
type
 pntr += sizeof(heading);
 break;
 }

 case CommProtocol::kPAngle:
 {
 // Move(source, destination, size (bytes)). Move copies the
specified number of
 // bytes from the source pointer to the destination pointer.

 Page 43 of 48

 // Store the pitch.
 Move(&(data[pntr]), &pitch, sizeof(pitch));

 // increase the pointer to point to the next data element
type
 pntr += sizeof(pitch);
 break;
 }

 case CommProtocol::kRAngle:
 {
 // Move(source, destination, size (bytes)). Move copies the
specified number of
 // bytes from the source pointer to the destination pointer.
 // Store the roll.
 Move(&(data[pntr]), &roll, sizeof(roll));

 // increase the pointer to point to the next data element
type
 pntr += sizeof(roll);
 break;
 }

 case CommProtocol::kTemperature:
 {
 // Move(source, destination, size (bytes)). Move copies the
specified number of
 // bytes from the source pointer to the destination pointer.
 // Store the heading.
 Move(&(data[pntr]), &temperature, sizeof(temperature));

 // increase the pointer to point to the next data element
type
 pntr += sizeof(temperature);
 break;
 }

 default:
 // Message is a function that displays a formatted string
(similar to printf)
 Message("Unknown type: %02X\r\n", data[pntr - 1]);
 // unknown data type, so size is unknown, so skip everything
 return;
 break;
 }

 count--; // One less element to read in
 }

 // Message is a function that displays a formatted string (similar to
printf)
 Message("Heading: %f, Pitch: %f, Roll: %f, Temperature: %f\r\n", heading,
pitch, roll,
 temperature);
 mStep--; // send next data request
 break;
 }

 default:
 {
 // Message is a function that displays a formatted string (similar to
printf)
 Message("Unknown frame %02X received\r\n", (UInt16)frameType);
 break;
 }
 }
}

//
// Have the CommProtocol build and send the frame to the unit.
//
void TCM3/5/5L::SendComm(UInt8 frameType, void * dataPtr, UInt16 dataLen)
{
 if(mComm) mComm->SendData(frameType, dataPtr, dataLen);
 // Ticks is a timer function. 1 tick = 10msec.
 mResponseTime = Ticks() + 300; // Expect a response within 3 seconds
}

//
// This is called each time this process gets a turn to execute.
//
void TCM3/5/5L::Control()
{

 Page 44 of 48

 switch(mStep)
 {
 case 1:
 {
 UInt8 pkt[kDataCount + 1]; // the compents we are requesting, preceded
by the number of...
 // ...components being requested

 pkt[0] = kDataCount;
 pkt[1] = CommProtocol::kHeading;
 pkt[2] = CommProtocol::kPAngle;
 pkt[3] = CommProtocol::kRAngle;
 pkt[4] = CommProtocol::kTemperature;

 SendComm(CommProtocol::kSetDataComponents, pkt, kDataCount + 1);

 // Ticks is a timer function. 1 tick = 10msec.
 mTime = Ticks() + 100; // Taking a sample in 1s.
 mStep++; // go to next step of process
 break;
 }

 case 2:
 {
 // Ticks is a timer function. 1 tick = 10msec.
 if(Ticks() > mTime)
 {
 // tell the unit to take a sample
 SendComm(CommProtocol::kGetData);
 mTime = Ticks() + 100; // take a sample every second
 mStep++;
 }
 break;
 }

 case 3:
 {
 // Ticks is a timer function. 1 tick = 10msec.
 if(Ticks() > mResponseTime)
 {
 Message("No response from the unit. Check connection and try
again\r\n");
 mStep = 0;
 }
 break;
 }

 default:
 break;
 }
}

 Page 45 of 48

Performance Specifications

Parameter TCM3 TCM5 TCM5L Units
Heading Specifications
Accuracy with <70° of tilt 0.5° 0.3° 0.3°
Accuracy with >70° of tilt 0.8° 0.5° 0.5°
Resolution 0.1° 0.1° 0.1°
Repeatability [1] 0.05° 0.05° 0.05°

Deg RMS

Max Dip Angle 85° 85° 85° Deg
Magnetormeter Specifications
Calibrated Field Measurement
Range ± 80 ± 80 ± 80

Magnetic Resolution ± 0.05 ± .05 ± .05
Magnetic Repeatability ± 0.1 ± 0.1 ± 0.1

µT

Tilt Specification

Pitch Accuracy 0.2° 0.2° 0.2°

Roll Accuracy
0.2° for Pitch < 65º
0.5° for Pitch < 80º
1.0° for Pitch < 86º

0.2° for Pitch < 65º
0.5° for Pitch < 80º
1.0° for Pitch < 86º

0.2° for Pitch < 65º
0.5° for Pitch < 80º
1.0° for Pitch < 86º

Deg RMS

Tilt Range ± 80° ± 90° pitch
± 180° roll

± 90° pitch
± 180° roll

Tilt Resolution < 0.01° < 0.01° < 0.01°
Deg

Tilt Repeatability [1] 0.05° 0.05° 0.05° Deg RMS
Calibration

Hard Iron Calibration Yes Yes Yes
Soft Iron Calibration Yes Yes Yes

Mechanical Specifications

Dimensions (L x W x H) 3.5 x 4.3 x 1.3 3.5 x 4.3 x 1.3 3.3 x 3.1 x 1.3* cm
Weight 12 12 12* grams

Mounting Options Screw mounts/standoffs;
horizontal Screw mounts/standoffs; horizontal or vertical

Connector for RS-232 9-pin 9-pin 4-pin
I/O Specifcations

Latency from Power-On < 210* < 210* < 210*
Latency from Sleep Mode < 1 < 1 < 1

mSec

Maximum Sample Rate 20 20 20 samples/sec
RS-232 Communication Rate 300 to 230400 300 to 230400 300 to 230400 baud
Output Formats Binary High Performance Protocol
Power Specifications

Supply Voltage 3.6 to 5 V (unregulated) 3.6 to 5 V (unregulated) 3.6 to 5 V (unregulated) VDC
Current Draw Max. 22 22 22
(Continuous Output) Typ. < 20 < 20 < 20
Idle Mode [2] 14 - 18 14 - 18 14 - 18
Sleep Mode 0.6 0.6 0.6

mA

Environmental Specifications
Operating Temperature -30° to 85° -40° to 85° -40° to 85°
Storage Temperature -40° to 85° -40° to 125° -40° to 125°

C

Shock Up to 2500 G’s, per MIL-STD-810F
Vibrations Qualified to MIL-STD-810F
Humidity Non-condensing/Qualified to MIL-STD-810F
[1] Repeatability is based on statistical data at ±3 sigma limit about the mean
* Other options may be available.

 Page 46 of 48

Mechanicals

TCM3/5

The default orientation for the TCM3/5/5L is for the silk-screened arrow to point in the “forward”
direction. That puts the edge opposite of the Molex connector as the front edge of the board.

 Page 47 of 48

18 in. Cable Assembly
�

�
�

� �Molex p/n 51146-0900
� �Molex p/n 50641-8141�

PIN Wire Color Description

1 Black Power Ground

2 Gray NC

3 Green RS232 Ground

4 Orange NC

5 Violet NC

6 Brown NC

7 Yellow TxD

8 Blue RxD

9 Red 5 VDC

Molex Connector Pin Description

 Page 48 of 48

TCM5L Board

The default orientation for the TCM5L is for the silk-screened arrow to point in the “forward”
direction.

TCM5L Pin Descriptions

PIN Description
1 Power Ground
2 5 VDC Supply
3 TxD (RS232)
4 RxD (RS232)

 No cable available for TCM5L

